Measurement ID Occurrence ID MeasurementOfTaxon Association ID Parent Measurement ID Measurement Type Measurement Value Unit Accuracy Statistical Method Determined Date Determined By Measurement Method Remarks Source Citation Contributor ReferenceID m1 Tupaiidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.09 http://eol.org/schema/terms/log10gram m2 Ptilocercidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.763 http://eol.org/schema/terms/log10gram m3 Lorisidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.834 http://eol.org/schema/terms/log10gram m4 Galagidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.745 http://eol.org/schema/terms/log10gram m5 Lemuridae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.367 http://eol.org/schema/terms/log10gram m6 Cheirogaleidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.263 http://eol.org/schema/terms/log10gram m7 Tarsiidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.053 http://eol.org/schema/terms/log10gram m8 Cebidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.942 http://eol.org/schema/terms/log10gram m9 Aotidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.914 http://eol.org/schema/terms/log10gram m10 Cercopithecidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.806 http://eol.org/schema/terms/log10gram m11 Leporidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.268 http://eol.org/schema/terms/log10gram m12 Ochotonidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.908 http://eol.org/schema/terms/log10gram m13 Sciuridae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.451 http://eol.org/schema/terms/log10gram m14 Aplodontiidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.799 http://eol.org/schema/terms/log10gram m15 Gliridae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.822 http://eol.org/schema/terms/log10gram m16 Hystricidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.053 http://eol.org/schema/terms/log10gram m17 Bathyergidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.112 http://eol.org/schema/terms/log10gram m18 Caviidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.775 http://eol.org/schema/terms/log10gram m19 Cuniculidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.962 http://eol.org/schema/terms/log10gram m20 Dasyproctidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.243 http://eol.org/schema/terms/log10gram m21 Chinchillidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.23 http://eol.org/schema/terms/log10gram m22 Erethizontidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.769 http://eol.org/schema/terms/log10gram m23 Ctenomyidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.407 http://eol.org/schema/terms/log10gram m24 Octodontidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.096 http://eol.org/schema/terms/log10gram m25 Echimyidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.603 http://eol.org/schema/terms/log10gram m26 Myocastoridae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.863 http://eol.org/schema/terms/log10gram m27 Capromyidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.42 http://eol.org/schema/terms/log10gram m28 Murinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.783 http://eol.org/schema/terms/log10gram m29 Deomyinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.684 http://eol.org/schema/terms/log10gram m30 Gerbillinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.698 http://eol.org/schema/terms/log10gram m31 Neotominae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.442 http://eol.org/schema/terms/log10gram m32 Sigmodontinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.611 http://eol.org/schema/terms/log10gram m33 Cricetinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.882 http://eol.org/schema/terms/log10gram m34 Arvicolinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.64 http://eol.org/schema/terms/log10gram m35 Cricetomyinae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.993 http://eol.org/schema/terms/log10gram m36 Spalacinae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.238 http://eol.org/schema/terms/log10gram m37 Rhizomyinae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.537 http://eol.org/schema/terms/log10gram m38 Dipodidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.634 http://eol.org/schema/terms/log10gram m39 Pedetidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.362 http://eol.org/schema/terms/log10gram m40 Geomyidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.129 http://eol.org/schema/terms/log10gram m41 Heteromyidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.514 http://eol.org/schema/terms/log10gram m42 Soricidae FALSE http://purl.obolibrary.org/obo/VT_0001259 0.902 http://eol.org/schema/terms/log10gram m43 Crociduridae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.077 http://eol.org/schema/terms/log10gram m44 Erinaceidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.62 http://eol.org/schema/terms/log10gram m45 Scalopidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.686 http://eol.org/schema/terms/log10gram m46 Bovidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.962 http://eol.org/schema/terms/log10gram m47 Cervidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.665 http://eol.org/schema/terms/log10gram m48 Giraffidae FALSE http://purl.obolibrary.org/obo/VT_0001259 5.602 http://eol.org/schema/terms/log10gram m49 Tayassuidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.312 http://eol.org/schema/terms/log10gram m50 Camelidae FALSE http://purl.obolibrary.org/obo/VT_0001259 5.291 http://eol.org/schema/terms/log10gram m51 Rhinocerotidae FALSE http://purl.obolibrary.org/obo/VT_0001259 5.477 http://eol.org/schema/terms/log10gram m52 Megadermatidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.17 http://eol.org/schema/terms/log10gram m53 Rhinolophidae FALSE http://purl.obolibrary.org/obo/VT_0001259 0.899 http://eol.org/schema/terms/log10gram m54 Pteropodidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.035 http://eol.org/schema/terms/log10gram m55 Emballonuridae FALSE http://purl.obolibrary.org/obo/VT_0001259 0.796 http://eol.org/schema/terms/log10gram m56 Vespertilionidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.133 http://eol.org/schema/terms/log10gram m57 Molossidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.39 http://eol.org/schema/terms/log10gram m58 Phyllostomidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.371 http://eol.org/schema/terms/log10gram m59 Mormoopidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.041 http://eol.org/schema/terms/log10gram m60 Manidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.536 http://eol.org/schema/terms/log10gram m61 Viverridae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.687 http://eol.org/schema/terms/log10gram m62 Eupleridae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.354 http://eol.org/schema/terms/log10gram m63 Herpestidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.901 http://eol.org/schema/terms/log10gram m64 Hyaenidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.909 http://eol.org/schema/terms/log10gram m65 Felidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.348 http://eol.org/schema/terms/log10gram m66 Nandiniidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.63 http://eol.org/schema/terms/log10gram m67 Canidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.72 http://eol.org/schema/terms/log10gram m68 Ursidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.685 http://eol.org/schema/terms/log10gram m69 Mephitidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.795 http://eol.org/schema/terms/log10gram m70 Ailuridae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.759 http://eol.org/schema/terms/log10gram m71 Procyonidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.468 http://eol.org/schema/terms/log10gram m72 Mustelidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.051 http://eol.org/schema/terms/log10gram m73 Dasypodidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.566 http://eol.org/schema/terms/log10gram m74 Bradypodidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.475 http://eol.org/schema/terms/log10gram m75 Megalonychidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.576 http://eol.org/schema/terms/log10gram m76 Cyclopedidae FALSE http://purl.obolibrary.org/obo/VT_0001259 2.38 http://eol.org/schema/terms/log10gram m77 Myrmecophagidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.876 http://eol.org/schema/terms/log10gram m78 Tenrecidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.679 http://eol.org/schema/terms/log10gram m79 Chrysocloridae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.643 http://eol.org/schema/terms/log10gram m80 Macroscelidae FALSE http://purl.obolibrary.org/obo/VT_0001259 1.788 http://eol.org/schema/terms/log10gram m81 Orycteropodidae FALSE http://purl.obolibrary.org/obo/VT_0001259 4.681 http://eol.org/schema/terms/log10gram m82 Elephantidae FALSE http://purl.obolibrary.org/obo/VT_0001259 6.509 http://eol.org/schema/terms/log10gram m83 Procaviidae FALSE http://purl.obolibrary.org/obo/VT_0001259 3.481 http://eol.org/schema/terms/log10gram 101 Tupaiidae m1 http://semanticscience.org/resource/SIO_000770 102 Ptilocercidae m2 http://semanticscience.org/resource/SIO_000770 103 Lorisidae m3 http://semanticscience.org/resource/SIO_000770 0.332 http://eol.org/schema/terms/log10gram 104 Galagidae m4 http://semanticscience.org/resource/SIO_000770 0.721 http://eol.org/schema/terms/log10gram 105 Lemuridae m5 http://semanticscience.org/resource/SIO_000770 106 Cheirogaleidae m6 http://semanticscience.org/resource/SIO_000770 0.303 http://eol.org/schema/terms/log10gram 107 Tarsiidae m7 http://semanticscience.org/resource/SIO_000770 108 Cebidae m8 http://semanticscience.org/resource/SIO_000770 109 Aotidae m9 http://semanticscience.org/resource/SIO_000770 110 Cercopithecidae m10 http://semanticscience.org/resource/SIO_000770 0.383 http://eol.org/schema/terms/log10gram 111 Leporidae m11 http://semanticscience.org/resource/SIO_000770 0.247 http://eol.org/schema/terms/log10gram 112 Ochotonidae m12 http://semanticscience.org/resource/SIO_000770 0.183 http://eol.org/schema/terms/log10gram 113 Sciuridae m13 http://semanticscience.org/resource/SIO_000770 0.449 http://eol.org/schema/terms/log10gram 114 Aplodontiidae m14 http://semanticscience.org/resource/SIO_000770 115 Gliridae m15 http://semanticscience.org/resource/SIO_000770 0.466 http://eol.org/schema/terms/log10gram 116 Hystricidae m16 http://semanticscience.org/resource/SIO_000770 117 Bathyergidae m17 http://semanticscience.org/resource/SIO_000770 0.383 http://eol.org/schema/terms/log10gram 118 Caviidae m18 http://semanticscience.org/resource/SIO_000770 0.744 http://eol.org/schema/terms/log10gram 119 Cuniculidae m19 http://semanticscience.org/resource/SIO_000770 120 Dasyproctidae m20 http://semanticscience.org/resource/SIO_000770 0.352 http://eol.org/schema/terms/log10gram 121 Chinchillidae m21 http://semanticscience.org/resource/SIO_000770 0.85 http://eol.org/schema/terms/log10gram 122 Erethizontidae m22 http://semanticscience.org/resource/SIO_000770 0.357 http://eol.org/schema/terms/log10gram 123 Ctenomyidae m23 http://semanticscience.org/resource/SIO_000770 0.208 http://eol.org/schema/terms/log10gram 124 Octodontidae m24 http://semanticscience.org/resource/SIO_000770 0.146 http://eol.org/schema/terms/log10gram 125 Echimyidae m25 http://semanticscience.org/resource/SIO_000770 0.133 http://eol.org/schema/terms/log10gram 126 Myocastoridae m26 http://semanticscience.org/resource/SIO_000770 127 Capromyidae m27 http://semanticscience.org/resource/SIO_000770 128 Murinae m28 http://semanticscience.org/resource/SIO_000770 0.484 http://eol.org/schema/terms/log10gram 129 Deomyinae m29 http://semanticscience.org/resource/SIO_000770 0.086 http://eol.org/schema/terms/log10gram 130 Gerbillinae m30 http://semanticscience.org/resource/SIO_000770 0.286 http://eol.org/schema/terms/log10gram 131 Neotominae m31 http://semanticscience.org/resource/SIO_000770 0.343 http://eol.org/schema/terms/log10gram 132 Sigmodontinae m32 http://semanticscience.org/resource/SIO_000770 0.293 http://eol.org/schema/terms/log10gram 133 Cricetinae m33 http://semanticscience.org/resource/SIO_000770 0.462 http://eol.org/schema/terms/log10gram 134 Arvicolinae m34 http://semanticscience.org/resource/SIO_000770 0.369 http://eol.org/schema/terms/log10gram 135 Cricetomyinae m35 http://semanticscience.org/resource/SIO_000770 0.873 http://eol.org/schema/terms/log10gram 136 Spalacinae m36 http://semanticscience.org/resource/SIO_000770 0.094 http://eol.org/schema/terms/log10gram 137 Rhizomyinae m37 http://semanticscience.org/resource/SIO_000770 138 Dipodidae m38 http://semanticscience.org/resource/SIO_000770 0.438 http://eol.org/schema/terms/log10gram 139 Pedetidae m39 http://semanticscience.org/resource/SIO_000770 140 Geomyidae m40 http://semanticscience.org/resource/SIO_000770 0.15 http://eol.org/schema/terms/log10gram 141 Heteromyidae m41 http://semanticscience.org/resource/SIO_000770 0.341 http://eol.org/schema/terms/log10gram 142 Soricidae m42 http://semanticscience.org/resource/SIO_000770 0.254 http://eol.org/schema/terms/log10gram 143 Crociduridae m43 http://semanticscience.org/resource/SIO_000770 0.338 http://eol.org/schema/terms/log10gram 144 Erinaceidae m44 http://semanticscience.org/resource/SIO_000770 0.4 http://eol.org/schema/terms/log10gram 145 Scalopidae m45 http://semanticscience.org/resource/SIO_000770 0.006 http://eol.org/schema/terms/log10gram 146 Bovidae m46 http://semanticscience.org/resource/SIO_000770 0.603 http://eol.org/schema/terms/log10gram 147 Cervidae m47 http://semanticscience.org/resource/SIO_000770 0.487 http://eol.org/schema/terms/log10gram 148 Giraffidae m48 http://semanticscience.org/resource/SIO_000770 149 Tayassuidae m49 http://semanticscience.org/resource/SIO_000770 150 Camelidae m50 http://semanticscience.org/resource/SIO_000770 0.512 http://eol.org/schema/terms/log10gram 151 Rhinocerotidae m51 http://semanticscience.org/resource/SIO_000770 152 Megadermatidae m52 http://semanticscience.org/resource/SIO_000770 153 Rhinolophidae m53 http://semanticscience.org/resource/SIO_000770 0.224 http://eol.org/schema/terms/log10gram 154 Pteropodidae m54 http://semanticscience.org/resource/SIO_000770 0.578 http://eol.org/schema/terms/log10gram 155 Emballonuridae m55 http://semanticscience.org/resource/SIO_000770 0.137 http://eol.org/schema/terms/log10gram 156 Vespertilionidae m56 http://semanticscience.org/resource/SIO_000770 0.334 http://eol.org/schema/terms/log10gram 157 Molossidae m57 http://semanticscience.org/resource/SIO_000770 0.311 http://eol.org/schema/terms/log10gram 158 Phyllostomidae m58 http://semanticscience.org/resource/SIO_000770 0.304 http://eol.org/schema/terms/log10gram 159 Mormoopidae m59 http://semanticscience.org/resource/SIO_000770 0.219 http://eol.org/schema/terms/log10gram 160 Manidae m60 http://semanticscience.org/resource/SIO_000770 0.435 http://eol.org/schema/terms/log10gram 161 Viverridae m61 http://semanticscience.org/resource/SIO_000770 0.369 http://eol.org/schema/terms/log10gram 162 Eupleridae m62 http://semanticscience.org/resource/SIO_000770 163 Herpestidae m63 http://semanticscience.org/resource/SIO_000770 0.249 http://eol.org/schema/terms/log10gram 164 Hyaenidae m64 http://semanticscience.org/resource/SIO_000770 165 Felidae m65 http://semanticscience.org/resource/SIO_000770 0.557 http://eol.org/schema/terms/log10gram 166 Nandiniidae m66 http://semanticscience.org/resource/SIO_000770 167 Canidae m67 http://semanticscience.org/resource/SIO_000770 0.47 http://eol.org/schema/terms/log10gram 168 Ursidae m68 http://semanticscience.org/resource/SIO_000770 0.564 http://eol.org/schema/terms/log10gram 169 Mephitidae m69 http://semanticscience.org/resource/SIO_000770 170 Ailuridae m70 http://semanticscience.org/resource/SIO_000770 171 Procyonidae m71 http://semanticscience.org/resource/SIO_000770 0.306 http://eol.org/schema/terms/log10gram 172 Mustelidae m72 http://semanticscience.org/resource/SIO_000770 0.811 http://eol.org/schema/terms/log10gram 173 Dasypodidae m73 http://semanticscience.org/resource/SIO_000770 0.5 http://eol.org/schema/terms/log10gram 174 Bradypodidae m74 http://semanticscience.org/resource/SIO_000770 0.147 http://eol.org/schema/terms/log10gram 175 Megalonychidae m75 http://semanticscience.org/resource/SIO_000770 176 Cyclopedidae m76 http://semanticscience.org/resource/SIO_000770 177 Myrmecophagidae m77 http://semanticscience.org/resource/SIO_000770 0.528 http://eol.org/schema/terms/log10gram 178 Tenrecidae m78 http://semanticscience.org/resource/SIO_000770 0.736 http://eol.org/schema/terms/log10gram 179 Chrysocloridae m79 http://semanticscience.org/resource/SIO_000770 180 Macroscelidae m80 http://semanticscience.org/resource/SIO_000770 0.237 http://eol.org/schema/terms/log10gram 181 Orycteropodidae m81 http://semanticscience.org/resource/SIO_000770 182 Elephantidae m82 http://semanticscience.org/resource/SIO_000770 0.324 http://eol.org/schema/terms/log10gram 183 Procaviidae m83 http://semanticscience.org/resource/SIO_000770 184 Tupaiidae m1 http://eol.org/schema/terms/SampleSize 1 species 185 Ptilocercidae m2 http://eol.org/schema/terms/SampleSize 1 species 186 Lorisidae m3 http://eol.org/schema/terms/SampleSize 3 species 187 Galagidae m4 http://eol.org/schema/terms/SampleSize 2 species 188 Lemuridae m5 http://eol.org/schema/terms/SampleSize 1 species 189 Cheirogaleidae m6 http://eol.org/schema/terms/SampleSize 2 species 190 Tarsiidae m7 http://eol.org/schema/terms/SampleSize 1 species 191 Cebidae m8 http://eol.org/schema/terms/SampleSize 1 species 192 Aotidae m9 http://eol.org/schema/terms/SampleSize 1 species 193 Cercopithecidae m10 http://eol.org/schema/terms/SampleSize 6 species 194 Leporidae m11 http://eol.org/schema/terms/SampleSize 9 species 195 Ochotonidae m12 http://eol.org/schema/terms/SampleSize 2 species 196 Sciuridae m13 http://eol.org/schema/terms/SampleSize 35 species 197 Aplodontiidae m14 http://eol.org/schema/terms/SampleSize 1 species 198 Gliridae m15 http://eol.org/schema/terms/SampleSize 3 species 199 Hystricidae m16 http://eol.org/schema/terms/SampleSize 1 species 200 Bathyergidae m17 http://eol.org/schema/terms/SampleSize 11 species 201 Caviidae m18 http://eol.org/schema/terms/SampleSize 5 species 202 Cuniculidae m19 http://eol.org/schema/terms/SampleSize 1 species 203 Dasyproctidae m20 http://eol.org/schema/terms/SampleSize 5 species 204 Chinchillidae m21 http://eol.org/schema/terms/SampleSize 2 species 205 Erethizontidae m22 http://eol.org/schema/terms/SampleSize 2 species 206 Ctenomyidae m23 http://eol.org/schema/terms/SampleSize 6 species 207 Octodontidae m24 http://eol.org/schema/terms/SampleSize 6 species 208 Echimyidae m25 http://eol.org/schema/terms/SampleSize 2 species 209 Myocastoridae m26 http://eol.org/schema/terms/SampleSize 1 species 210 Capromyidae m27 http://eol.org/schema/terms/SampleSize 1 species 211 Murinae m28 http://eol.org/schema/terms/SampleSize 29 species 212 Deomyinae m29 http://eol.org/schema/terms/SampleSize 2 species 213 Gerbillinae m30 http://eol.org/schema/terms/SampleSize 17 species 214 Neotominae m31 http://eol.org/schema/terms/SampleSize 28 species 215 Sigmodontinae m32 http://eol.org/schema/terms/SampleSize 18 species 216 Cricetinae m33 http://eol.org/schema/terms/SampleSize 5 species 217 Arvicolinae m34 http://eol.org/schema/terms/SampleSize 26 species 218 Cricetomyinae m35 http://eol.org/schema/terms/SampleSize 4 species 219 Spalacinae m36 http://eol.org/schema/terms/SampleSize 3 species 220 Rhizomyinae m37 http://eol.org/schema/terms/SampleSize 1 species 221 Dipodidae m38 http://eol.org/schema/terms/SampleSize 7 species 222 Pedetidae m39 http://eol.org/schema/terms/SampleSize 1 species 223 Geomyidae m40 http://eol.org/schema/terms/SampleSize 5 species 224 Heteromyidae m41 http://eol.org/schema/terms/SampleSize 22 species 225 Soricidae m42 http://eol.org/schema/terms/SampleSize 12 species 226 Crociduridae m43 http://eol.org/schema/terms/SampleSize 12 species 227 Erinaceidae m44 http://eol.org/schema/terms/SampleSize 7 species 228 Scalopidae m45 http://eol.org/schema/terms/SampleSize 2 species 229 Bovidae m46 http://eol.org/schema/terms/SampleSize 9 species 230 Cervidae m47 http://eol.org/schema/terms/SampleSize 6 species 231 Giraffidae m48 http://eol.org/schema/terms/SampleSize 1 species 232 Tayassuidae m49 http://eol.org/schema/terms/SampleSize 1 species 233 Camelidae m50 http://eol.org/schema/terms/SampleSize 2 species 234 Rhinocerotidae m51 http://eol.org/schema/terms/SampleSize 1 species 235 Megadermatidae m52 http://eol.org/schema/terms/SampleSize 1 species 236 Rhinolophidae m53 http://eol.org/schema/terms/SampleSize 4 species 237 Pteropodidae m54 http://eol.org/schema/terms/SampleSize 22 species 238 Emballonuridae m55 http://eol.org/schema/terms/SampleSize 2 species 239 Vespertilionidae m56 http://eol.org/schema/terms/SampleSize 11 species 240 Molossidae m57 http://eol.org/schema/terms/SampleSize 3 species 241 Phyllostomidae m58 http://eol.org/schema/terms/SampleSize 21 species 242 Mormoopidae m59 http://eol.org/schema/terms/SampleSize 6 species 243 Manidae m60 http://eol.org/schema/terms/SampleSize 3 species 244 Viverridae m61 http://eol.org/schema/terms/SampleSize 5 species 245 Eupleridae m62 http://eol.org/schema/terms/SampleSize 1 species 246 Herpestidae m63 http://eol.org/schema/terms/SampleSize 5 species 247 Hyaenidae m64 http://eol.org/schema/terms/SampleSize 1 species 248 Felidae m65 http://eol.org/schema/terms/SampleSize 8 species 249 Nandiniidae m66 http://eol.org/schema/terms/SampleSize 1 species 250 Canidae m67 http://eol.org/schema/terms/SampleSize species 251 Ursidae m68 http://eol.org/schema/terms/SampleSize 3 species 252 Mephitidae m69 http://eol.org/schema/terms/SampleSize 1 species 253 Ailuridae m70 http://eol.org/schema/terms/SampleSize 1 species 254 Procyonidae m71 http://eol.org/schema/terms/SampleSize 7 species 255 Mustelidae m72 http://eol.org/schema/terms/SampleSize 13 species 256 Dasypodidae m73 http://eol.org/schema/terms/SampleSize 9 species 257 Bradypodidae m74 http://eol.org/schema/terms/SampleSize 2 species 258 Megalonychidae m75 http://eol.org/schema/terms/SampleSize 1 species 259 Cyclopedidae m76 http://eol.org/schema/terms/SampleSize 1 species 260 Myrmecophagidae m77 http://eol.org/schema/terms/SampleSize 3 species 261 Tenrecidae m78 http://eol.org/schema/terms/SampleSize 8 species 262 Chrysocloridae m79 http://eol.org/schema/terms/SampleSize 1 species 263 Macroscelidae m80 http://eol.org/schema/terms/SampleSize 7 species 264 Orycteropodidae m81 http://eol.org/schema/terms/SampleSize 1 species 265 Elephantidae m82 http://eol.org/schema/terms/SampleSize 2 species 266 Procaviidae m83 http://eol.org/schema/terms/SampleSize 1 species t1 Tupaiidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37 http://purl.obolibrary.org/obo/UO_0000027 t2 Ptilocercidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.5 http://purl.obolibrary.org/obo/UO_0000027 t3 Lorisidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.67 http://purl.obolibrary.org/obo/UO_0000027 t4 Galagidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.5 http://purl.obolibrary.org/obo/UO_0000027 t5 Lemuridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.5 http://purl.obolibrary.org/obo/UO_0000027 t6 Cheirogaleidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.05 http://purl.obolibrary.org/obo/UO_0000027 t7 Tarsiidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 33.8 http://purl.obolibrary.org/obo/UO_0000027 t8 Cebidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38 http://purl.obolibrary.org/obo/UO_0000027 t9 Aotidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38 http://purl.obolibrary.org/obo/UO_0000027 t10 Cercopithecidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.9 http://purl.obolibrary.org/obo/UO_0000027 t11 Leporidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.93 http://purl.obolibrary.org/obo/UO_0000027 t12 Ochotonidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 39.55 http://purl.obolibrary.org/obo/UO_0000027 t13 Sciuridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.43 http://purl.obolibrary.org/obo/UO_0000027 t14 Aplodontiidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38 http://purl.obolibrary.org/obo/UO_0000027 t15 Gliridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.23 http://purl.obolibrary.org/obo/UO_0000027 t16 Hystricidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.5 http://purl.obolibrary.org/obo/UO_0000027 t17 Bathyergidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.47 http://purl.obolibrary.org/obo/UO_0000027 t18 Caviidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38 http://purl.obolibrary.org/obo/UO_0000027 t19 Cuniculidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.2 http://purl.obolibrary.org/obo/UO_0000027 t20 Dasyproctidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.76 http://purl.obolibrary.org/obo/UO_0000027 t21 Chinchillidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.25 http://purl.obolibrary.org/obo/UO_0000027 t22 Erethizontidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.1 http://purl.obolibrary.org/obo/UO_0000027 t23 Ctenomyidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.17 http://purl.obolibrary.org/obo/UO_0000027 t24 Octodontidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.83 http://purl.obolibrary.org/obo/UO_0000027 t25 Echimyidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.75 http://purl.obolibrary.org/obo/UO_0000027 t26 Myocastoridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38 http://purl.obolibrary.org/obo/UO_0000027 t27 Capromyidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.1 http://purl.obolibrary.org/obo/UO_0000027 t28 Murinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37 http://purl.obolibrary.org/obo/UO_0000027 t29 Deomyinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.4 http://purl.obolibrary.org/obo/UO_0000027 t30 Gerbillinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.79 http://purl.obolibrary.org/obo/UO_0000027 t31 Neotominae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.66 http://purl.obolibrary.org/obo/UO_0000027 t32 Sigmodontinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.14 http://purl.obolibrary.org/obo/UO_0000027 t33 Cricetinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.86 http://purl.obolibrary.org/obo/UO_0000027 t34 Arvicolinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.77 http://purl.obolibrary.org/obo/UO_0000027 t35 Cricetomyinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.5 http://purl.obolibrary.org/obo/UO_0000027 t36 Spalacinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.07 http://purl.obolibrary.org/obo/UO_0000027 t37 Rhizomyinae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36 http://purl.obolibrary.org/obo/UO_0000027 t38 Dipodidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.03 http://purl.obolibrary.org/obo/UO_0000027 t39 Pedetidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.9 http://purl.obolibrary.org/obo/UO_0000027 t40 Geomyidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.62 http://purl.obolibrary.org/obo/UO_0000027 t41 Heteromyidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.81 http://purl.obolibrary.org/obo/UO_0000027 t42 Soricidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.02 http://purl.obolibrary.org/obo/UO_0000027 t43 Crociduridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.46 http://purl.obolibrary.org/obo/UO_0000027 t44 Erinaceidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.37 http://purl.obolibrary.org/obo/UO_0000027 t45 Scalopidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.85 http://purl.obolibrary.org/obo/UO_0000027 t46 Bovidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.8 http://purl.obolibrary.org/obo/UO_0000027 t47 Cervidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.65 http://purl.obolibrary.org/obo/UO_0000027 t48 Giraffidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.5 http://purl.obolibrary.org/obo/UO_0000027 t49 Tayassuidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.5 http://purl.obolibrary.org/obo/UO_0000027 t50 Camelidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.95 http://purl.obolibrary.org/obo/UO_0000027 t51 Rhinocerotidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.2 http://purl.obolibrary.org/obo/UO_0000027 t52 Megadermatidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37 http://purl.obolibrary.org/obo/UO_0000027 t53 Rhinolophidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.48 http://purl.obolibrary.org/obo/UO_0000027 t54 Pteropodidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.9 http://purl.obolibrary.org/obo/UO_0000027 t55 Emballonuridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.95 http://purl.obolibrary.org/obo/UO_0000027 t56 Vespertilionidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.93 http://purl.obolibrary.org/obo/UO_0000027 t57 Molossidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 33.33 http://purl.obolibrary.org/obo/UO_0000027 t58 Phyllostomidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.29 http://purl.obolibrary.org/obo/UO_0000027 t59 Mormoopidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 35.43 http://purl.obolibrary.org/obo/UO_0000027 t60 Manidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 32.94 http://purl.obolibrary.org/obo/UO_0000027 t61 Viverridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.28 http://purl.obolibrary.org/obo/UO_0000027 t62 Eupleridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.9 http://purl.obolibrary.org/obo/UO_0000027 t63 Herpestidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.58 http://purl.obolibrary.org/obo/UO_0000027 t64 Hyaenidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.4 http://purl.obolibrary.org/obo/UO_0000027 t65 Felidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.86 http://purl.obolibrary.org/obo/UO_0000027 t66 Nandiniidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.4 http://purl.obolibrary.org/obo/UO_0000027 t67 Canidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.21 http://purl.obolibrary.org/obo/UO_0000027 t68 Ursidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.7 http://purl.obolibrary.org/obo/UO_0000027 t69 Mephitidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.4 http://purl.obolibrary.org/obo/UO_0000027 t70 Ailuridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.6 http://purl.obolibrary.org/obo/UO_0000027 t71 Procyonidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.59 http://purl.obolibrary.org/obo/UO_0000027 t72 Mustelidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 38.92 http://purl.obolibrary.org/obo/UO_0000027 t73 Dasypodidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.34 http://purl.obolibrary.org/obo/UO_0000027 t74 Bradypodidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 32.25 http://purl.obolibrary.org/obo/UO_0000027 t75 Megalonychidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.4 http://purl.obolibrary.org/obo/UO_0000027 t76 Cyclopedidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 33 http://purl.obolibrary.org/obo/UO_0000027 t77 Myrmecophagidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 32.67 http://purl.obolibrary.org/obo/UO_0000027 t78 Tenrecidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 33.16 http://purl.obolibrary.org/obo/UO_0000027 t79 Chrysocloridae FALSE http://purl.bioontology.org/ontology/MESH/D001831 33.8 http://purl.obolibrary.org/obo/UO_0000027 t80 Macroscelidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 37.3 http://purl.obolibrary.org/obo/UO_0000027 t81 Orycteropodidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 34.5 http://purl.obolibrary.org/obo/UO_0000027 t82 Elephantidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.1 http://purl.obolibrary.org/obo/UO_0000027 t83 Procaviidae FALSE http://purl.bioontology.org/ontology/MESH/D001831 36.03 http://purl.obolibrary.org/obo/UO_0000027 267 Tupaiidae t1 http://semanticscience.org/resource/SIO_000770 268 Ptilocercidae t2 http://semanticscience.org/resource/SIO_000770 269 Lorisidae t3 http://semanticscience.org/resource/SIO_000770 0.38 http://purl.obolibrary.org/obo/UO_0000027 270 Galagidae t4 http://semanticscience.org/resource/SIO_000770 0.57 http://purl.obolibrary.org/obo/UO_0000027 271 Lemuridae t5 http://semanticscience.org/resource/SIO_000770 272 Cheirogaleidae t6 http://semanticscience.org/resource/SIO_000770 1.34 http://purl.obolibrary.org/obo/UO_0000027 273 Tarsiidae t7 http://semanticscience.org/resource/SIO_000770 274 Cebidae t8 http://semanticscience.org/resource/SIO_000770 275 Aotidae t9 http://semanticscience.org/resource/SIO_000770 276 Cercopithecidae t10 http://semanticscience.org/resource/SIO_000770 1.1 http://purl.obolibrary.org/obo/UO_0000027 277 Leporidae t11 http://semanticscience.org/resource/SIO_000770 0.67 http://purl.obolibrary.org/obo/UO_0000027 278 Ochotonidae t12 http://semanticscience.org/resource/SIO_000770 0.78 http://purl.obolibrary.org/obo/UO_0000027 279 Sciuridae t13 http://semanticscience.org/resource/SIO_000770 1.31 http://purl.obolibrary.org/obo/UO_0000027 280 Aplodontiidae t14 http://semanticscience.org/resource/SIO_000770 281 Gliridae t15 http://semanticscience.org/resource/SIO_000770 1.27 http://purl.obolibrary.org/obo/UO_0000027 282 Hystricidae t16 http://semanticscience.org/resource/SIO_000770 283 Bathyergidae t17 http://semanticscience.org/resource/SIO_000770 1.16 http://purl.obolibrary.org/obo/UO_0000027 284 Caviidae t18 http://semanticscience.org/resource/SIO_000770 0.79 http://purl.obolibrary.org/obo/UO_0000027 285 Cuniculidae t19 http://semanticscience.org/resource/SIO_000770 286 Dasyproctidae t20 http://semanticscience.org/resource/SIO_000770 1.42 http://purl.obolibrary.org/obo/UO_0000027 287 Chinchillidae t21 http://semanticscience.org/resource/SIO_000770 0.78 http://purl.obolibrary.org/obo/UO_0000027 288 Erethizontidae t22 http://semanticscience.org/resource/SIO_000770 0.57 http://purl.obolibrary.org/obo/UO_0000027 289 Ctenomyidae t23 http://semanticscience.org/resource/SIO_000770 0.67 http://purl.obolibrary.org/obo/UO_0000027 290 Octodontidae t24 http://semanticscience.org/resource/SIO_000770 0.69 http://purl.obolibrary.org/obo/UO_0000027 291 Echimyidae t25 http://semanticscience.org/resource/SIO_000770 0.21 http://purl.obolibrary.org/obo/UO_0000027 292 Myocastoridae t26 http://semanticscience.org/resource/SIO_000770 293 Capromyidae t27 http://semanticscience.org/resource/SIO_000770 294 Murinae t28 http://semanticscience.org/resource/SIO_000770 0.95 http://purl.obolibrary.org/obo/UO_0000027 295 Deomyinae t29 http://semanticscience.org/resource/SIO_000770 0.14 http://purl.obolibrary.org/obo/UO_0000027 296 Gerbillinae t30 http://semanticscience.org/resource/SIO_000770 1.42 http://purl.obolibrary.org/obo/UO_0000027 297 Neotominae t31 http://semanticscience.org/resource/SIO_000770 0.57 http://purl.obolibrary.org/obo/UO_0000027 298 Sigmodontinae t32 http://semanticscience.org/resource/SIO_000770 0.69 http://purl.obolibrary.org/obo/UO_0000027 299 Cricetinae t33 http://semanticscience.org/resource/SIO_000770 1.23 http://purl.obolibrary.org/obo/UO_0000027 300 Arvicolinae t34 http://semanticscience.org/resource/SIO_000770 0.81 http://purl.obolibrary.org/obo/UO_0000027 301 Cricetomyinae t35 http://semanticscience.org/resource/SIO_000770 1.19 http://purl.obolibrary.org/obo/UO_0000027 302 Spalacinae t36 http://semanticscience.org/resource/SIO_000770 0.21 http://purl.obolibrary.org/obo/UO_0000027 303 Rhizomyinae t37 http://semanticscience.org/resource/SIO_000770 304 Dipodidae t38 http://semanticscience.org/resource/SIO_000770 0.297 http://purl.obolibrary.org/obo/UO_0000027 305 Pedetidae t39 http://semanticscience.org/resource/SIO_000770 306 Geomyidae t40 http://semanticscience.org/resource/SIO_000770 0.769 http://purl.obolibrary.org/obo/UO_0000027 307 Heteromyidae t41 http://semanticscience.org/resource/SIO_000770 1.84 http://purl.obolibrary.org/obo/UO_0000027 308 Soricidae t42 http://semanticscience.org/resource/SIO_000770 0.81 http://purl.obolibrary.org/obo/UO_0000027 309 Crociduridae t43 http://semanticscience.org/resource/SIO_000770 1.26 http://purl.obolibrary.org/obo/UO_0000027 310 Erinaceidae t44 http://semanticscience.org/resource/SIO_000770 1.19 http://purl.obolibrary.org/obo/UO_0000027 311 Scalopidae t45 http://semanticscience.org/resource/SIO_000770 1.2 http://purl.obolibrary.org/obo/UO_0000027 312 Bovidae t46 http://semanticscience.org/resource/SIO_000770 0.49 http://purl.obolibrary.org/obo/UO_0000027 313 Cervidae t47 http://semanticscience.org/resource/SIO_000770 0.39 http://purl.obolibrary.org/obo/UO_0000027 314 Giraffidae t48 http://semanticscience.org/resource/SIO_000770 315 Tayassuidae t49 http://semanticscience.org/resource/SIO_000770 316 Camelidae t50 http://semanticscience.org/resource/SIO_000770 1.06 http://purl.obolibrary.org/obo/UO_0000027 317 Rhinocerotidae t51 http://semanticscience.org/resource/SIO_000770 318 Megadermatidae t52 http://semanticscience.org/resource/SIO_000770 319 Rhinolophidae t53 http://semanticscience.org/resource/SIO_000770 4.28 http://purl.obolibrary.org/obo/UO_0000027 320 Pteropodidae t54 http://semanticscience.org/resource/SIO_000770 1.11 http://purl.obolibrary.org/obo/UO_0000027 321 Emballonuridae t55 http://semanticscience.org/resource/SIO_000770 0.78 http://purl.obolibrary.org/obo/UO_0000027 322 Vespertilionidae t56 http://semanticscience.org/resource/SIO_000770 2.88 http://purl.obolibrary.org/obo/UO_0000027 323 Molossidae t57 http://semanticscience.org/resource/SIO_000770 2.39 http://purl.obolibrary.org/obo/UO_0000027 324 Phyllostomidae t58 http://semanticscience.org/resource/SIO_000770 1.75 http://purl.obolibrary.org/obo/UO_0000027 325 Mormoopidae t59 http://semanticscience.org/resource/SIO_000770 3.17 http://purl.obolibrary.org/obo/UO_0000027 326 Manidae t60 http://semanticscience.org/resource/SIO_000770 0.49 http://purl.obolibrary.org/obo/UO_0000027 327 Viverridae t61 http://semanticscience.org/resource/SIO_000770 1.16 http://purl.obolibrary.org/obo/UO_0000027 328 Eupleridae t62 http://semanticscience.org/resource/SIO_000770 329 Herpestidae t63 http://semanticscience.org/resource/SIO_000770 1.36 http://purl.obolibrary.org/obo/UO_0000027 330 Hyaenidae t64 http://semanticscience.org/resource/SIO_000770 331 Felidae t65 http://semanticscience.org/resource/SIO_000770 0.72 http://purl.obolibrary.org/obo/UO_0000027 332 Nandiniidae t66 http://semanticscience.org/resource/SIO_000770 333 Canidae t67 http://semanticscience.org/resource/SIO_000770 0.58 http://purl.obolibrary.org/obo/UO_0000027 334 Ursidae t68 http://semanticscience.org/resource/SIO_000770 0.79 http://purl.obolibrary.org/obo/UO_0000027 335 Mephitidae t69 http://semanticscience.org/resource/SIO_000770 336 Ailuridae t70 http://semanticscience.org/resource/SIO_000770 337 Procyonidae t71 http://semanticscience.org/resource/SIO_000770 1.02 http://purl.obolibrary.org/obo/UO_0000027 338 Mustelidae t72 http://semanticscience.org/resource/SIO_000770 0.8 http://purl.obolibrary.org/obo/UO_0000027 339 Dasypodidae t73 http://semanticscience.org/resource/SIO_000770 0.84 http://purl.obolibrary.org/obo/UO_0000027 340 Bradypodidae t74 http://semanticscience.org/resource/SIO_000770 1.06 http://purl.obolibrary.org/obo/UO_0000027 341 Megalonychidae t75 http://semanticscience.org/resource/SIO_000770 342 Cyclopedidae t76 http://semanticscience.org/resource/SIO_000770 343 Myrmecophagidae t77 http://semanticscience.org/resource/SIO_000770 0.76 http://purl.obolibrary.org/obo/UO_0000027 344 Tenrecidae t78 http://semanticscience.org/resource/SIO_000770 1.8 http://purl.obolibrary.org/obo/UO_0000027 345 Chrysocloridae t79 http://semanticscience.org/resource/SIO_000770 346 Macroscelidae t80 http://semanticscience.org/resource/SIO_000770 0.25 http://purl.obolibrary.org/obo/UO_0000027 347 Orycteropodidae t81 http://semanticscience.org/resource/SIO_000770 348 Elephantidae t82 http://semanticscience.org/resource/SIO_000770 0.14 http://purl.obolibrary.org/obo/UO_0000027 349 Procaviidae t83 http://semanticscience.org/resource/SIO_000770 350 Tupaiidae t1 http://eol.org/schema/terms/SampleSize 1 species 351 Ptilocercidae t2 http://eol.org/schema/terms/SampleSize 1 species 352 Lorisidae t3 http://eol.org/schema/terms/SampleSize 3 species 353 Galagidae t4 http://eol.org/schema/terms/SampleSize 2 species 354 Lemuridae t5 http://eol.org/schema/terms/SampleSize 1 species 355 Cheirogaleidae t6 http://eol.org/schema/terms/SampleSize 2 species 356 Tarsiidae t7 http://eol.org/schema/terms/SampleSize 1 species 357 Cebidae t8 http://eol.org/schema/terms/SampleSize 1 species 358 Aotidae t9 http://eol.org/schema/terms/SampleSize 1 species 359 Cercopithecidae t10 http://eol.org/schema/terms/SampleSize 6 species 360 Leporidae t11 http://eol.org/schema/terms/SampleSize 9 species 361 Ochotonidae t12 http://eol.org/schema/terms/SampleSize 2 species 362 Sciuridae t13 http://eol.org/schema/terms/SampleSize 35 species 363 Aplodontiidae t14 http://eol.org/schema/terms/SampleSize 1 species 364 Gliridae t15 http://eol.org/schema/terms/SampleSize 3 species 365 Hystricidae t16 http://eol.org/schema/terms/SampleSize 1 species 366 Bathyergidae t17 http://eol.org/schema/terms/SampleSize 11 species 367 Caviidae t18 http://eol.org/schema/terms/SampleSize 5 species 368 Cuniculidae t19 http://eol.org/schema/terms/SampleSize 1 species 369 Dasyproctidae t20 http://eol.org/schema/terms/SampleSize 5 species 370 Chinchillidae t21 http://eol.org/schema/terms/SampleSize 2 species 371 Erethizontidae t22 http://eol.org/schema/terms/SampleSize 2 species 372 Ctenomyidae t23 http://eol.org/schema/terms/SampleSize 6 species 373 Octodontidae t24 http://eol.org/schema/terms/SampleSize 6 species 374 Echimyidae t25 http://eol.org/schema/terms/SampleSize 2 species 375 Myocastoridae t26 http://eol.org/schema/terms/SampleSize 1 species 376 Capromyidae t27 http://eol.org/schema/terms/SampleSize 1 species 377 Murinae t28 http://eol.org/schema/terms/SampleSize 29 species 378 Deomyinae t29 http://eol.org/schema/terms/SampleSize 2 species 379 Gerbillinae t30 http://eol.org/schema/terms/SampleSize 17 species 380 Neotominae t31 http://eol.org/schema/terms/SampleSize 28 species 381 Sigmodontinae t32 http://eol.org/schema/terms/SampleSize 18 species 382 Cricetinae t33 http://eol.org/schema/terms/SampleSize 5 species 383 Arvicolinae t34 http://eol.org/schema/terms/SampleSize 26 species 384 Cricetomyinae t35 http://eol.org/schema/terms/SampleSize 4 species 385 Spalacinae t36 http://eol.org/schema/terms/SampleSize 3 species 386 Rhizomyinae t37 http://eol.org/schema/terms/SampleSize 1 species 387 Dipodidae t38 http://eol.org/schema/terms/SampleSize 7 species 388 Pedetidae t39 http://eol.org/schema/terms/SampleSize 1 species 389 Geomyidae t40 http://eol.org/schema/terms/SampleSize 5 species 390 Heteromyidae t41 http://eol.org/schema/terms/SampleSize 22 species 391 Soricidae t42 http://eol.org/schema/terms/SampleSize 12 species 392 Crociduridae t43 http://eol.org/schema/terms/SampleSize 10 species 393 Erinaceidae t44 http://eol.org/schema/terms/SampleSize 7 species 394 Scalopidae t45 http://eol.org/schema/terms/SampleSize 2 species 395 Bovidae t46 http://eol.org/schema/terms/SampleSize 9 species 396 Cervidae t47 http://eol.org/schema/terms/SampleSize 6 species 397 Giraffidae t48 http://eol.org/schema/terms/SampleSize 1 species 398 Tayassuidae t49 http://eol.org/schema/terms/SampleSize 1 species 399 Camelidae t50 http://eol.org/schema/terms/SampleSize 2 species 400 Rhinocerotidae t51 http://eol.org/schema/terms/SampleSize 1 species 401 Megadermatidae t52 http://eol.org/schema/terms/SampleSize 1 species 402 Rhinolophidae t53 http://eol.org/schema/terms/SampleSize 4 species 403 Pteropodidae t54 http://eol.org/schema/terms/SampleSize 22 species 404 Emballonuridae t55 http://eol.org/schema/terms/SampleSize 2 species 405 Vespertilionidae t56 http://eol.org/schema/terms/SampleSize 11 species 406 Molossidae t57 http://eol.org/schema/terms/SampleSize 3 species 407 Phyllostomidae t58 http://eol.org/schema/terms/SampleSize 21 species 408 Mormoopidae t59 http://eol.org/schema/terms/SampleSize 6 species 409 Manidae t60 http://eol.org/schema/terms/SampleSize 3 species 410 Viverridae t61 http://eol.org/schema/terms/SampleSize 5 species 411 Eupleridae t62 http://eol.org/schema/terms/SampleSize 1 species 412 Herpestidae t63 http://eol.org/schema/terms/SampleSize 5 species 413 Hyaenidae t64 http://eol.org/schema/terms/SampleSize 1 species 414 Felidae t65 http://eol.org/schema/terms/SampleSize 8 species 415 Nandiniidae t66 http://eol.org/schema/terms/SampleSize 1 species 416 Canidae t67 http://eol.org/schema/terms/SampleSize 8 species 417 Ursidae t68 http://eol.org/schema/terms/SampleSize 3 species 418 Mephitidae t69 http://eol.org/schema/terms/SampleSize 1 species 419 Ailuridae t70 http://eol.org/schema/terms/SampleSize 1 species 420 Procyonidae t71 http://eol.org/schema/terms/SampleSize 7 species 421 Mustelidae t72 http://eol.org/schema/terms/SampleSize 13 species 422 Dasypodidae t73 http://eol.org/schema/terms/SampleSize 9 species 423 Bradypodidae t74 http://eol.org/schema/terms/SampleSize 2 species 424 Megalonychidae t75 http://eol.org/schema/terms/SampleSize 1 species 425 Cyclopedidae t76 http://eol.org/schema/terms/SampleSize 1 species 426 Myrmecophagidae t77 http://eol.org/schema/terms/SampleSize 3 species 427 Tenrecidae t78 http://eol.org/schema/terms/SampleSize 8 species 428 Chrysocloridae t79 http://eol.org/schema/terms/SampleSize 1 species 429 Macroscelidae t80 http://eol.org/schema/terms/SampleSize 7 species 430 Orycteropodidae t81 http://eol.org/schema/terms/SampleSize 1 species 431 Elephantidae t82 http://eol.org/schema/terms/SampleSize 2 species 432 Procaviidae t83 http://eol.org/schema/terms/SampleSize 1 species 433 Tupaiidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 434 Ptilocercidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 435 Lorisidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 436 Galagidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 437 Lemuridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 438 Cheirogaleidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 439 Tarsiidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 440 Cebidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 441 Aotidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 442 Cercopithecidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 443 Leporidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 444 Ochotonidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 445 Sciuridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 446 Aplodontiidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 447 Gliridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 448 Hystricidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 449 Bathyergidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 450 Caviidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 451 Cuniculidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 452 Dasyproctidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 453 Chinchillidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 454 Erethizontidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 455 Ctenomyidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 456 Octodontidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 457 Echimyidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 458 Myocastoridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 459 Capromyidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 460 Murinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 461 Deomyinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 462 Gerbillinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 463 Neotominae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 464 Sigmodontinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 465 Cricetinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 466 Arvicolinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 467 Cricetomyinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 468 Spalacinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 469 Rhizomyinae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 470 Dipodidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 471 Pedetidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 472 Geomyidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 473 Heteromyidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 474 Soricidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 475 Crociduridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 476 Erinaceidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 477 Scalopidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 478 Bovidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 479 Cervidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 480 Giraffidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 481 Tayassuidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 482 Camelidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 483 Rhinocerotidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 484 Megadermatidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 485 Rhinolophidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 486 Pteropodidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 487 Emballonuridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 488 Vespertilionidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 489 Molossidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 490 Phyllostomidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 491 Mormoopidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 492 Manidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/inguinal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 493 Viverridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 494 Eupleridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 495 Herpestidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 496 Hyaenidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 497 Felidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 498 Nandiniidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 499 Canidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 500 Ursidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 501 Mephitidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 502 Ailuridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 503 Procyonidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 504 Mustelidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/scrotal The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 505 Dasypodidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 506 Bradypodidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 507 Megalonychidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 508 Cyclopedidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 509 Myrmecophagidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 510 Tenrecidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 511 Chrysocloridae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 512 Macroscelidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 513 Orycteropodidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 514 Elephantidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 515 Procaviidae TRUE http://eol.org/schema/terms/TestisLocation http://eol.org/schema/terms/testicond The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lunn 1948;Freeman 1990;Kleisner 2010 516 Tupaiidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 517 Ptilocercidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 518 Lorisidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 519 Galagidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 520 Lemuridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 521 Cheirogaleidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 522 Tarsiidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 523 Cebidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 524 Aotidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 525 Cercopithecidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 526 Leporidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 527 Ochotonidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 528 Sciuridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 529 Aplodontiidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 530 Gliridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 531 Hystricidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 532 Bathyergidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 533 Caviidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 534 Cuniculidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 535 Dasyproctidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 536 Chinchillidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 537 Erethizontidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 538 Ctenomyidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 539 Octodontidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 540 Echimyidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 541 Myocastoridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 542 Capromyidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 543 Murinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 544 Deomyinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 545 Gerbillinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 546 Neotominae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 547 Sigmodontinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 548 Cricetinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 549 Arvicolinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 550 Cricetomyinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 551 Spalacinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 552 Rhizomyinae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 553 Dipodidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 554 Pedetidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 555 Geomyidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 556 Heteromyidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 557 Soricidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 558 Crociduridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 559 Erinaceidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 560 Scalopidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 561 Bovidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 562 Cervidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 563 Giraffidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 564 Tayassuidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 565 Camelidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 566 Rhinocerotidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 575 Manidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 576 Viverridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 577 Eupleridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 578 Herpestidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 579 Hyaenidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 580 Felidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 581 Nandiniidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 582 Canidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 583 Ursidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 584 Mephitidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 585 Ailuridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 586 Procyonidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 587 Mustelidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 588 Dasypodidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 589 Bradypodidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 590 Megalonychidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 591 Cyclopedidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 592 Myrmecophagidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 593 Tenrecidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 594 Chrysocloridae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 595 Macroscelidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://purl.obolibrary.org/obo/NBO_0000055 The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 596 Orycteropodidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 597 Elephantidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 598 Procaviidae TRUE http://purl.obolibrary.org/obo/GO_0040011 http://eol.org/schema/terms/nonCursorial The Tb and body mass of ancestral states were reconstructed from mean values for mammal families using stochastic character mapping sampled from Bayesian posterior probability distributions https://doi.org/10.5061/dryad.s5k0t Lovegrove BG (2014) Cool sperm: why some placental mammals have a scrotum. Journal of Evolutionary Biology, online in advance of print. doi:10.1111/jeb.12373 Lovegrove 2012a 599 433 https://eol.org/schema/terms/starts_at 8707 600 434 https://eol.org/schema/terms/starts_at 8706 601 435 https://eol.org/schema/terms/starts_at 47049497 602 436 https://eol.org/schema/terms/starts_at 47049511 603 437 https://eol.org/schema/terms/starts_at 1650 604 438 https://eol.org/schema/terms/starts_at 1656 605 439 https://eol.org/schema/terms/starts_at 1646 606 440 https://eol.org/schema/terms/starts_at 1658 607 441 https://eol.org/schema/terms/starts_at 2921332 608 442 https://eol.org/schema/terms/starts_at 1657 609 443 https://eol.org/schema/terms/starts_at 1689 610 444 https://eol.org/schema/terms/starts_at 1688 611 445 https://eol.org/schema/terms/starts_at 8703 612 446 https://eol.org/schema/terms/starts_at 8681 613 447 https://eol.org/schema/terms/starts_at 47051528 614 448 https://eol.org/schema/terms/starts_at 8696 615 449 https://eol.org/schema/terms/starts_at 8682 616 450 https://eol.org/schema/terms/starts_at 8685 617 451 https://eol.org/schema/terms/starts_at 47051854 618 452 https://eol.org/schema/terms/starts_at 2849115 619 453 https://eol.org/schema/terms/starts_at 8686 620 454 https://eol.org/schema/terms/starts_at 8691 621 455 https://eol.org/schema/terms/starts_at 2849135 622 456 https://eol.org/schema/terms/starts_at 8700 623 457 https://eol.org/schema/terms/starts_at 8690 624 458 https://eol.org/schema/terms/starts_at 46559459 625 459 https://eol.org/schema/terms/starts_at 8690 626 460 https://eol.org/schema/terms/starts_at 2847355 627 461 https://eol.org/schema/terms/starts_at 7163963 628 462 https://eol.org/schema/terms/starts_at 2848704 629 463 https://eol.org/schema/terms/starts_at 7164018 630 464 https://eol.org/schema/terms/starts_at 2848007 631 465 https://eol.org/schema/terms/starts_at 2848590 632 466 https://eol.org/schema/terms/starts_at 2847171 633 467 https://eol.org/schema/terms/starts_at 2848655 634 468 https://eol.org/schema/terms/starts_at 2848829 635 469 https://eol.org/schema/terms/starts_at 2848636 636 470 https://eol.org/schema/terms/starts_at 8689 637 471 https://eol.org/schema/terms/starts_at 8701 638 472 https://eol.org/schema/terms/starts_at 8692 639 473 https://eol.org/schema/terms/starts_at 8694 640 474 https://eol.org/schema/terms/starts_at 8714 642 476 https://eol.org/schema/terms/starts_at 1693 644 478 https://eol.org/schema/terms/starts_at 7687 645 479 https://eol.org/schema/terms/starts_at 7685 646 480 https://eol.org/schema/terms/starts_at 7684 647 481 https://eol.org/schema/terms/starts_at 7680 648 482 https://eol.org/schema/terms/starts_at 7686 649 483 https://eol.org/schema/terms/starts_at 1669 650 484 https://eol.org/schema/terms/starts_at 7645 651 485 https://eol.org/schema/terms/starts_at 7635 652 486 https://eol.org/schema/terms/starts_at 7636 653 487 https://eol.org/schema/terms/starts_at 7647 654 488 https://eol.org/schema/terms/starts_at 7632 655 489 https://eol.org/schema/terms/starts_at 7644 656 490 https://eol.org/schema/terms/starts_at 7637 657 491 https://eol.org/schema/terms/starts_at 7643 658 492 https://eol.org/schema/terms/starts_at 1666 659 493 https://eol.org/schema/terms/starts_at 7663 660 494 https://eol.org/schema/terms/starts_at 7675 661 495 https://eol.org/schema/terms/starts_at 7673 662 496 https://eol.org/schema/terms/starts_at 7672 663 497 https://eol.org/schema/terms/starts_at 7674 664 498 https://eol.org/schema/terms/starts_at 7669 665 499 https://eol.org/schema/terms/starts_at 7676 666 500 https://eol.org/schema/terms/starts_at 7664 667 501 https://eol.org/schema/terms/starts_at 7671 668 502 https://eol.org/schema/terms/starts_at 7677 669 503 https://eol.org/schema/terms/starts_at 7665 670 504 https://eol.org/schema/terms/starts_at 7670 671 505 https://eol.org/schema/terms/starts_at 7630 672 506 https://eol.org/schema/terms/starts_at 1664 673 507 https://eol.org/schema/terms/starts_at 1662 674 508 https://eol.org/schema/terms/starts_at 1663 675 509 https://eol.org/schema/terms/starts_at 1661 676 510 https://eol.org/schema/terms/starts_at 7690 677 511 https://eol.org/schema/terms/starts_at 7691 678 512 https://eol.org/schema/terms/starts_at 1685 679 513 https://eol.org/schema/terms/starts_at 8717 680 514 https://eol.org/schema/terms/starts_at 1644 681 515 https://eol.org/schema/terms/starts_at 1691 682 516 https://eol.org/schema/terms/starts_at 8707 683 517 https://eol.org/schema/terms/starts_at 8706 684 518 https://eol.org/schema/terms/starts_at 47049497 685 519 https://eol.org/schema/terms/starts_at 47049511 686 520 https://eol.org/schema/terms/starts_at 1650 687 521 https://eol.org/schema/terms/starts_at 1656 688 522 https://eol.org/schema/terms/starts_at 1646 689 523 https://eol.org/schema/terms/starts_at 1658 690 524 https://eol.org/schema/terms/starts_at 2921332 691 525 https://eol.org/schema/terms/starts_at 1657 692 526 https://eol.org/schema/terms/starts_at 1689 693 527 https://eol.org/schema/terms/starts_at 1688 694 528 https://eol.org/schema/terms/starts_at 8703 695 529 https://eol.org/schema/terms/starts_at 8681 696 530 https://eol.org/schema/terms/starts_at 47051528 697 531 https://eol.org/schema/terms/starts_at 8696 698 532 https://eol.org/schema/terms/starts_at 8682 699 533 https://eol.org/schema/terms/starts_at 8685 700 534 https://eol.org/schema/terms/starts_at 47051854 701 535 https://eol.org/schema/terms/starts_at 2849115 702 536 https://eol.org/schema/terms/starts_at 8686 703 537 https://eol.org/schema/terms/starts_at 8691 704 538 https://eol.org/schema/terms/starts_at 2849135 705 539 https://eol.org/schema/terms/starts_at 8700 706 540 https://eol.org/schema/terms/starts_at 8690 707 541 https://eol.org/schema/terms/starts_at 46559459 708 542 https://eol.org/schema/terms/starts_at 8690 709 543 https://eol.org/schema/terms/starts_at 2847355 710 544 https://eol.org/schema/terms/starts_at 7163963 711 545 https://eol.org/schema/terms/starts_at 2848704 712 546 https://eol.org/schema/terms/starts_at 7164018 713 547 https://eol.org/schema/terms/starts_at 2848007 714 548 https://eol.org/schema/terms/starts_at 2848590 715 549 https://eol.org/schema/terms/starts_at 2847171 716 550 https://eol.org/schema/terms/starts_at 2848655 717 551 https://eol.org/schema/terms/starts_at 2848829 718 552 https://eol.org/schema/terms/starts_at 2848636 719 553 https://eol.org/schema/terms/starts_at 8689 720 554 https://eol.org/schema/terms/starts_at 8701 721 555 https://eol.org/schema/terms/starts_at 8692 722 556 https://eol.org/schema/terms/starts_at 8694 723 557 https://eol.org/schema/terms/starts_at 8714 725 559 https://eol.org/schema/terms/starts_at 1693 727 561 https://eol.org/schema/terms/starts_at 7687 728 562 https://eol.org/schema/terms/starts_at 7685 729 563 https://eol.org/schema/terms/starts_at 7684 730 564 https://eol.org/schema/terms/starts_at 7680 731 565 https://eol.org/schema/terms/starts_at 7686 732 566 https://eol.org/schema/terms/starts_at 1669 741 575 https://eol.org/schema/terms/starts_at 1666 742 576 https://eol.org/schema/terms/starts_at 7663 743 577 https://eol.org/schema/terms/starts_at 7675 744 578 https://eol.org/schema/terms/starts_at 7673 745 579 https://eol.org/schema/terms/starts_at 7672 746 580 https://eol.org/schema/terms/starts_at 7674 747 581 https://eol.org/schema/terms/starts_at 7669 748 582 https://eol.org/schema/terms/starts_at 7676 749 583 https://eol.org/schema/terms/starts_at 7664 750 584 https://eol.org/schema/terms/starts_at 7671 751 585 https://eol.org/schema/terms/starts_at 7677 752 586 https://eol.org/schema/terms/starts_at 7665 753 587 https://eol.org/schema/terms/starts_at 7670 754 588 https://eol.org/schema/terms/starts_at 7630 755 589 https://eol.org/schema/terms/starts_at 1664 756 590 https://eol.org/schema/terms/starts_at 1662 757 591 https://eol.org/schema/terms/starts_at 1663 758 592 https://eol.org/schema/terms/starts_at 1661 759 593 https://eol.org/schema/terms/starts_at 7690 760 594 https://eol.org/schema/terms/starts_at 7691 761 595 https://eol.org/schema/terms/starts_at 1685 762 596 https://eol.org/schema/terms/starts_at 8717 763 597 https://eol.org/schema/terms/starts_at 1644 764 598 https://eol.org/schema/terms/starts_at 1691